1 stepped pressure equilibrium code: verify

Contents

1	stepped pressure equilibrium code : verify	1
	1.1 Brief	1

1.1 Brief

- 1. Supporting documentation.
- 1. On rational surfaces, where t = n/m, the straight fieldline poloidal angle is not unique.
- 2. To prove this, let $\tilde{\theta} = \theta + \delta_{m,n} \sin(m\theta n\zeta)$ where θ satisfies the straight fieldline angle condition, $\mathbf{B} \cdot \nabla \theta = \iota \mathbf{B} \cdot \nabla \zeta$.
- 3. Then, $\mathbf{B} \cdot \nabla \tilde{\theta} = \mathbf{B} \cdot \nabla \theta + (m \mathbf{B} \cdot \nabla \theta n \mathbf{B} \cdot \nabla \zeta) \delta_{m,n} \cos(m\theta n\zeta)$, which reduces to $\mathbf{B} \cdot \nabla \tilde{\theta} = \iota \mathbf{B} \cdot \nabla \zeta$ if $\iota = n/m$.
- 4. If required, it is possible to define a 'preferred' straight fieldline angle on the rational surfaces as that angle which is smoothly connected to the straight fieldline angle on the infinitesimally-nearby irrational surfaces.

verify.h last modified on 2015-05-06;